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Introduction

—

e In order to communicate reliably and to reduce the required
_transmitter power, NASA uses coded communication systems
~on most of their deep space satellites and probes (e.g. Pioneer,
—-Voyager, Galileo, and the TDRSS network).

 These communication systems use binary convolutional codes.
Better codes make the system more reliable and require less
_transmitter power.

« However, there are no good construction techniques for convo-
Tlutional codes. Thus, to find good convolutional codes requires
_an exhaustive search over the ensemble of all possible codes.

« In this paper, an efficient convolutional code search algorithm

-was implemented on an IBM RS6000 Model 580. The combi-
nation of algorithm efficiency and computational power enabled

“us to find, for the first time, the optimal rate 1/2, memory 14,
convolutional code.



Digital Transmission Over a Noisy Channel
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o When binary digital data is transmitted over a real channel, it
— is subject to noise (we will assume Additive White Gaussian
Noise). The noise can cause errors to occur at the receiver.

s The acceptable bit-error-rate (BER) at the receiver depends on
_the type of data being transmitted. For example, video signals
- are more forgiving of errors than computer data.

% One of the goals of forward error correction (FEC) coding, is to
allow the receiver to correct errors caused by the channel and
~ thus to increase the reliability of the system and/or reduce the

_required signal energy.



Example (Binary Numbers)
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‘e To transmit a 5 in binary, the codeword 101 would be sent. This
- sequence of transmitted bits is then subject to channel noise.

- If the channel noise is large enough relative to the transmitted
= signal energy (per bit), the receiver may interpret a transmitted
~~1lasa0,or vice-versa.

- For example, an optimum receiver would interpret the-received

[

= signal shown above as 111 or 8. In this case, the receiver makes
. one error which in turn causes one codeword, 101, to' be con-
= verted into another codeword, 111.

 The probability that a 1 is received as a 0 and vice versa is
_ called the channel transition probability, p, and is a fanction of
= the signal-to-noise ratio (SNR),

-~ SNR ==

- where Ejs is the average transmitted signal energy per bit and
N, is the one sided noise spectral density (a measure of the noise
~ power).



Example (cont.)

¢ Given a channel transition probability of p, the probability that
—101 is transmitted and 111 is received is given by

_ Poin =P =(1-p)p

This probability can be reduced by increasing the SNR which
~in turn causes a reduction in p.

- In this example, one bit error causes one codeword to be con-
verted into another codeword. We say that this code has mini-
— mum free Hamming distance, of dy = 1.
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~In general, each codeword in this code may be converted into 3
_ different codewords by a single bit error with probability P, 3
— different codewords by two bit errors with probability

- B=(1-pp*< P
- and one other codeword with three bit errors with probability

P3=(1—P)P2 < P

- The overall probability of codeword error is

Po =3P, +3P,+ 1P

— which can be reduced by increasing the SNR.



_Geometric Interpretation and Hamming
Distance
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¢ Intuitive insight into the error mechanism can be obtained using
" 'a geometric perspective.

« From this point of view, each codeword in the previous example
—is considered a vector in a 3-dimensional vector space: The
- distance between two vectors is the Hamming Distance, dg, which
—is just the number of positions in which two vectors differ.

« The probability that a codeword is converted into another code-
- word at a Hamming distance of d is

P; = (1 —p)*~p*

~Notice, that as the Hamming distance between two codewords
_increases P; decreases!

. For a fixed SNR and thus a fixed channel transition probability,
~p, the probability of a codeword error can be reduced by in-
_ creasing the Hamming distance between all pairs of codewords.



Example: Repetition Coding

_, simple coding technique is known as repetition coding. In
this scheme each bit is simply transmitted twice in succession.

)

» Continuing the previous example, repetition coding leads to the

_ollowing set of codewords.
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| o The mininum free Hamming distance is now ds
“overall probability of codeword error is

- P’c=3P2+3P4+1P5<Pc,

= 2 and the

_because each codeword has 3 codewords at distance 2, 3 code-
words at distance 4, and 1 codeword at distance 6.

« The enumeration of the distances between one codeword and all
_other codewords in the code is called the code distance spectrum

and is usually depicted in the following way
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Coding Performance Tradeofis

« The probability of codeword error in digital communications

systems on the AWGN channel is determined primarily by three
—factors:

_ 1. SNR,
2. dy, the code’s minimum distance, and

~ 3. the code’s distance spectrum.

« Historically, due to the expense of putting large power supplies
in space and the relatively large amount of available bandwidth,

=NASA has chosen to improve system performance by using cod-
ing and expanding the required transmission bandwidth.

¢ With most of its satellites and deep space probes, NASA has
—chosen to use convolutional codes because of their superior per-
formance characteristics in this application.



Convolutional Codes

¢« A binary linear convolutional code with rate k/n is a set of semi-
infinite sequences generated by a finite state machine character-
_ized by three parameters:

1. k, the number of inputs bits per encoding interval,

2. n, the number of output bits per encoding interval,

— 3. m, the memory order of the finite state machine.
_The finite state machine has 2™ states.

« During each encoding interval, an (n,k,m) convolutional code
=encodes k information bits into n bits based on the current block
- of k bits and the past m blocks of k bits.

¢ The minimum distance between codewords and thus the perfor-
-mance of a convolutional code increases as the rate decreases
and the memory increases.



A (2,1,2) Convolutional Code
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~ A rate 1/2, convolutional code is specified by a pair of generators
~ denoted by (g1, g2) that describe the connections from the shift
- register to the output.

_ The (2,1,2) code shown above has generators

gl = 101 =5
92 = 010=2



Optimal Distance Spectrum Codes

had

¢ The maximum free distance of a (2,1,14) code is known to be
~18. Many good codes have been found that have this free dis-
tance. The goal of this research was to find the “best” rate 1/2,
“memory 14 convolutional code with free distance 18.

o« One way to do this is by finding the distance spectrum of every
~possible code.

¢ Those codes with fewer paths at a given distance have a lower
=probability of error, and thus are considered better. If the num-
ber of paths are recorded for each code having a minimum free
~distance of 18, the list could then be sorted and the best code
- found.

e For example, the maximal free distance (2,1,14) code with gen-
_erators (g1, g2) =(56721,61713) has 33 paths of weight 18. If an-

other (2,1,14) code with fewer weight 18 paths could be found,
~this code would be a better code.



JThe Problem with Finding Optimal Codes

o_Finding the optimal code would be easy if the all of the codes’
_distance spectra could be evaluated and sorted in a reason-
—able amount of time. However, there are 1,073,741,824 possible
codes of memory length 14.

e Finding a single (2,1,14) code’s distance spectrum is a compli-
_cated process that takes approximately 30 CPU seconds on the
IBM RS6000 Model 580. At this rate, a search of every code

_would take roughly one millenia, not including the sort routine
to find the best code.

o;Thus, to make any search feasible, it is necessary to first pare
_down the number of codes that must be tested by using other
techniques for detecting inferior codes.

¢ In addition, all catastrophic codes must be eliminated before
-attempting to find their distance spectrum. Catastrophic codes
“are codes in which a finite weight information sequence can gen-
—erate an infinite weight codeword.

¢« This characteristic causes an infinite loop in the distance spec-
“trum algorithm; if not eliminated these codes would make the
search impossible.

¢ Unfortunately, an algorithm to recognize catastrophic codes is
-very complicated and time consuming because it involves fac-
toring.



] Iethods of Reducing the Number of Codes

« The number of codes can be reduced by making certain restric-
“tions regarding the structure of the codes. These restrictions

are based on known properties of convolutional codes and do
" not affect the search results in any way.

« The two primary restrictions used were

_ 1. both generators must start with a 1, and

2. one generator must end with a 1.
“These restrictions reduce the number of codes by a factor of 8.

¢ Second, an upper bound on the free distance can be utilized
to eliminate codes that cannot achieve the known maximal free

~distance. This bound uses the row distance function, which is a

_decreasing function whose limit is the free distance.

« For most codes, the row distance function converges quickly and
~is a very effective way of reducing the number of codes.

 Third, codes whose generators are mirror images of each other
can be eliminated, because they generate identical sets of code-
-words and thus identical distance spectrums.



INffectiveness of Schemes to Eliminate Codes

~ Initially, there are 1,073,741,824 possible codes and the search
~would have taken 1021 years.

_ After placing the two restrictions on the code generators, the
_ number is reduced to 134,217,728. This search would have re-
— quired 127 years.

_ The row distance evaluations, which require significant compu-
tational time, reduce the number of codes to a few hundred.
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~ The Optimal Distance Search : FAST

- With a reduced list of generators, evaiuating the distance spec-
- trum becomes feasible. This was done by implementing a ver-

sion of the FAST algorithm (A Fast Algorithm for Searching a
~ Tree) published by Cedervall and Johannesson.

- Given a set of generators, the FAST algorithm builds and searches
~ the code tree to determine the weight of all relevant code se-
= quences. Using column distance function bounds to limit and

speed the search, it ultimately returns the number of paths for
~ the ten lowest weights.

_ Efficient programming and compiler optimization resulted in a
'CPU time of 30 seconds for the distance spectrum evaluation of
- one (2,1,14) code.

_ After using FAST to evaluate the candidate codes, the distance
spectrum results must be sorted.



Search Results and Conclusions

o The (2,1,14) code with generators (g1,¢2) = (63057,44735) was
_found to be the optimal distance spectrum code.

¢ This code has only 26 weight 18 paths, as opposed to the pre-
viously known best (2,1,14) code which has 33 weight 18 paths.
_Thus, the new code is optimum for high signal-to-noise ratios.

¢ The new code is being simulated using computer models Notre
“Dame and a real decoder at the Jet Propulsion Laboratory in

~“Pasadena, California, to determine if it is the best code for
"moderate SNR's.

«The techniques used in this code search are being refined and
extended to find more complex codes for future NASA applica-
=tions.



Optimal Rate 1/2, K = 15 (m = 14), Convolutional Codes

The rate 1/2, K = 15 (m=14) convolutional code found by Cedervall
and Johanneson [1] is the optimum distance spectrum (ODS) code. The
generators for this code are

g(l) = 63057T=1+D+ D*+ D°+ D°+ D' + D'* + D3 4 DU
g® = 4735 =1+D*+ D+ D"+ D°+ D'+ D' + D'* + DM

and its distance spectrum is

d |[18 11920 |21 22 |23 | 24 25| 26 |27
Ny 260 [165| 0 {845 | 0 [ 4844 | 0 | 28513 | O

The generators for the code in Lin and Costelle [2] are

¢ = 56721 =1+ D?*+ D*+ D*+ D*+ D" + D%+ D'° + D™
¢? = 61713 =1+D+ D%+ D°+ D"+ D*+ D" + D** + D™

and its distance spectrum is

d [[18119] 20 {21 ] 22 {23 | 24 [25| 26 |27
Ny[[33]0]136] 0 [85]0 [4787 | 0 [27941 | O

Both of these codes are invariant to 180° rotations of the QPSK signal
set.
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